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Astrobiology
3 fundamental ques_tiou_ns_. ,-

How does life begin & evolve? ..

What is the future of life
on Earth & beyond?
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Competitively-selected science
teams, each a consortium (currently
12 teams)

~600 members at ~100 participating
institutions

o ~320 “senior” scientists
o ~280 postdocs and students

o« ~20 members of the US
National Academy of Sciences

Managed/integrated by a central
office at NASA Ames Research
Center

CAN 6 TEAMS

Massachusetts Institute of Technology
* University of lllinois at Urbana-Champaign
» University of Southern California
* University of Wisconsin
e VPL at University of Washington

CAN / TEAMS
NASA Goddard Space Flight Center
* NASA Ames Research Center
* NASA Jet Propulsion Laboratory
e SETI Institute
* University of Colorado in Boulder
» University of California, Riverside
* University of Montana in Missoula

CAN 8 TEAMS

e Pennsylvania State University
* NASA Jet Propulsion Laboratory
* Rutgers University
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CAN 6: University. of Washlngton

The Virtual Planetary Laboratory

Pl |s_V|ctoria Meadows
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CAN 6: University of Hllnms

Towards Universal Biology: Constraints from Early and Contlnumg_ EvoTqunary Dynamlcs of Life on Earthﬁ'

» Study the general physical principles
underlying the emergence of life —

a mathematical basis for the
emergence of evolvable dynamical
processes

Investigate Life before the Last
Universal Common Ancestor (LUCA)
— the “progenote”, a hypothetical
communal state of gene sharing that
preceded cellular life, using detailed
and sophisticated analyses of core
translational machinery

Examine how environmental
conditions affect the speed with which
evolutionary adaptation takes place,
l.e., how the ability to evolve itself
evolves

Pl is Nigel Goldenfleld

Phylogenetic Tree of Life
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Green
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Understand the emergence of cellular
machinery following the progenote state —
focusing on mining Archaeal genomes,
searching for the ancestors at the root of the
Eukarya-Archaeal branching and determining
how genomes became more stable over
evolutionary time



Proterozoic Archean

CAN 6: University of Wisconsin A TR uniaite Eeich
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CAN 6: University of Southern Callfornla

Life Underground:;

- Plis Jan Amend

» What spectral/optical signals
indicate the presence of biomass?

In situ Life Detection

> What kind of metabolic activities and Characterization
can be detected/measured in situ? I

» What is the limit of resolution
of biomass detection in deep
subsurface samples?

Access to

» Can one distinguish

living from dead
biomass in situ?

"4

Guided Cultivation of Energy Flow and

‘Intra-Terrestrials’ W« U Metabolic Modeling



CAN 6: Massachusetts Institute._f--:""oﬁ_f Technology
Foundations of Complex Life: Evolution; Preservation-and Detection on Earth and Beyond™ ﬁ
' Pl is Roger SUmmons
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Questions to be addressed include:
 What is the relationship between genomic and morphological complexity?

 What caused large Neoproterozoic (1000-542 million years ago) perturbations of
the carbon cycle, and how do they relate to the emergence of biological complexity?

* What principles and mechanisms determine the preservation of organic matter and
fossils, through time and in relation to ocean-atmosphere chemistry?

 What taphonomic insights drawn from these studies apply elsewhere, particularly
Gale Crater on Mars?



CAN 7: The SETI Institute

Changing Planetary Environments & the Fifgerprints-of Life

Pl is Nathalie Cabrol

Develop a roadmap to biosignature
exploration in support of NASA's decadal
plan for the search for life on Mars

“How do we identify and cache
the most valuable samples?”

The Signatures of Habitability:
Mars Ancient Mineral Record and
Terrestrial Aerial Imagery

Taphonomic Windows &
Biosighature Preservation:
Earth Analogs

Environmental Control on the
Survival & Preservation
Potential of Organic Molecules

Adaptive Detection of
Biosignatures: Applying Data
Fusion, Novelty Detection, and
Autonomous Detection of
Biogenicity



CAN 7: Jet Propulsmn Laboratory

Icy Worlds: Astrobiology at the Rock Water lhtérface and. Beyond

Pl is Isik Kd;wk .

How can geochemical disequilibria drive the emergence of metabolism and
ultimately generate observable signatures on icy worlds?
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CAN 7: NASA Goddard Spac':é?-:l?l'ightCenter

Origin and Evolution of Organics and \Vater jffPlanetary Systems

- Pl is Mike Mumma

. . A. The Messengers
Did de_llvery of exogenous Natal Regions sy 2 Modern Worlds
organics and water enable - z £
the emergence and 2 e z
evolution of life? Why is ¥ - =

Earth wet and alive?

Hartley 2

Meteorite

Carbonaceous Interplanetary
Earth
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Comets Extraterrestrial
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) Interstellar Disks Sriveiipadi S
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synthesized and processed?

* What dynamical
mechanisms delivered these
primitive bodies?

» Can we find evidence for
habitability elsewhere in the
present day Solar System?

» Develop instrument
protocols for future in situ

Investi g ations. Keck James Webb Terahertz Advanced Models, Ultra High-Res Laser Mass
Observatory  Space Telescope Spectroscopy Chemical & Spectral Mass Spectromefry  Spectrometry

Synthesis & Simulations Organic Sample Analysis
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CAN 7: NASA Ames Research Center

The Evolution of Prebiotic Chemical Complexity'and the Qrganie Tnventory, of Protoplanetay =

Disks and Primordial Planéts Pl is Scott Sandford
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CAN 7: University of Callfornla Rlver3|de

Alternative Earths: Explaining Persistent Inhab|tat1cm on"a Dynamic Early Eart'ff. 1
Pl is Timothy Lyons

How has Earth remained persistently inhabited through most of its dynamic history,
and how do those varying states of inhabitation manifest in the atmosphere?

_all Dwger'n_c -
photosynthesis
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Alternative ) o ) )
Earth Resolve when oxygenic photosynthesis first left traces in Earth’s atmosphere and whether (and, if so,
1 why) there was a lag between oxygen’s first biological production and its persistent accumulation.
Alternative ) o ) . ) o
Earth Determine whether Earth’s surface underwent a unidirectional oxygen rise—as typically envisioned—
2 or whether (and why) this early history was characterized by a series of rises and falls.
Alternative ) ) o o
Earth Determine whether surface oxygen concentrations maintained sufficiently low levels, for perhaps a
3 billion years of Earth’s history, to play a direct role in when animals first hit the scene and diversified.




CAN 7: University of Montana. (Georgla Tech)

RELIVING THE PAST: Experimental Evolution of Major Trahsitions in-the History of Llfﬁ

Pl.is Frank Rosenzwelg

What forces bring about major transitions in the evolution of biocomplexity?
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Organized around five questions related to major transitions in the history of Life;

How do enzymes and metabolic networks evolve?
How did the eukaryotic cell come to be?
How do symbioses arise?
How does multicellularity evolve? and
How do pleiotropy, epistasis and mutation rate constrain the evolution of novel traits?

A unifying theme underlying these questions is: how do cooperative vs.
competitive interactions play out in driving major transitions that occur when
independently replicating entities combine into a larger, more complex whole?



CAN 7: University of C@Iorado

Rock-Powered Life: Revealing Mechanisms of Energy Flow from the Lithosphere to the Biosphere™
Pl is Alexis Templeton

How do the mechanisms of low temperature water/rock reactions control the
distribution, activity, and biochemistry of life in rock-hosted systems?

Photo credit: Hannah Miller
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» Defining the pathways that control how energy is released from ultramafic rocks as
they react with low-temperature fluids,

» Identifying and interpreting the process rates and ecology in systems undergoing
water/rock reactions,

* Quantifying the geochemical and mineralogical progression of water/rock reactions
in the presence and absence of biology,

» Characterizing microbial communities within rock-hosted ecosystems and
evaluating their metabolic activities,

» Developing and testing predictive models of biological habitability during
water/rock interaction.



Integrating Research The__m;éf_é?bf the NAI

Serpentinizing Systems
(Univ. of Colorado, USC, SETI Inst., JPL, U.C.-Riverside, Univ. of Montana,
Univ. of Wisconsin, Univ. of lllinois)

Habitable Planetary States, the Evolution of Microbial Life, and their

Astronomical Biosignatures
(U.C.-Riverside, Univ. of Montana, Univ. of Washington, Univ. of Wisconsin, MIT, SETI Inst.,
JPL, Univ. of Colorado, USC)

Planetary Inventory of Organics and Water, and the Origin of Life
(GSFC, U.C.-Riverside, MIT, Univ. of lllinois, NASA Ames)

Environmental Change and Biosignatures
(SETI Inst., Univ. of Wisconsin, Univ. of Colorado, USC, U.C.-Riverside, MIT, others)

GeoBioCell Applications

(Univ. of lllinois, Univ. of Montana, USC, Univ. of Wisconsin, JPL, Univ. of Colorado,
U.C.-Riverside, GSFC)

Evolution of Complex Life
(Univ. of Montana, MIT, SETI Inst., U.C.-Riverside, USC, Univ. of Colorado)



International Partners

ASSOCIATE PARTNERS:

£} Centro de Astrobiologia (CAB) ® Instituto de Astrobiologia Colombia (IAC)
{ Australian Centre for Astrobiology (ACA) ) Nordic Network of Astrobiology
) Russian Astrobiology Center (RAC)
Astrobiology Society of Britain (ASB) ) Societé Francaise d’Exobiologie (SFE)
D Canadian Astrobiology Network (CAN) ® Sociedad Mexicana de Astrobiologia (SOMA)

European Exo/Astrobiology Network Association (EANA) @ UK Centre for Astrobiology (UKCA)
Helmholtz Alliance: Planetary Evolution and Life USP Research Unit in Astrobiology




Collaborative Technologies f(jr;f.;::}?\j___s"trobibllogy: -

Information Technology Werking Group (ITWG) ﬁ‘

« Composed of IT enthusiasts from each team

* Meets virtually once a month

 Share lessons learned and knowledge

» Test hardware, software and integration

 POCs for virtual events

* Provides local training, support, expertise and feedback within the system

» Build organizational structures within NAI to promote an optimal interaction

between centralization and autonomy
@




Other NAI Efforts

Minority Institution Research Support Program (for faculty)
Postdoctoral Fellowship Program (for postdoctoral scholars)

The Lewis and Clark Fund for Exploration and Field Research
In Astrobiology (for graduate students & postdocs)

Early Career Collaboration Award (for graduate students &
postdocs)

Meeting and Workshop Support, Workshops Without Walls

Education and Public Outreach in Transition.....



NASA/Library of Congress:
Blumberg Astrobiology_Qhaéi;rf_,.

Lucianne Walkowicz

Oct. 2017 — Sept. 2018

An astronomer based at the Adler Planetarium, Walkowicz intends to work on a
project entitled “Fear of a Green Planet: Inclusive Systems of Thought for
Human Exploration of Mars.” Her project will create an inclusive framework for
human exploration of Mars—a vision that encompasses both cutting-edge
research on Mars as a place of essential astrobiological significance and
weaves in lessons from the diverse histories of exploration on Earth. In addition
to studying stellar magnetic activity and the effect on planetary suitability for
extraterrestrial life at Adler Planetarium, Walkowicz is a TED senior fellow and
artist.
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